
International Journal of Computer Trends and Technology Volume 72 Issue 10, 113-120, October 2024

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V72I10P118 © 2024 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Research Article

Green Software Quality: A Comprehensive Framework

for Sustainable Metrics in Software Development

Saurabh Kapoor

Senior Quality Assurance Engineer, Amazon, Virginia, USA.

Corresponding Author : saurabh.kapoor16@gmail.com

Received: 03 September 2024 Revised: 06 October 2024 Accepted: 20 October 2024 Published: 30 October 2024

Abstract - In the digital age, software systems have become integral to every aspect of human life, from businesses and education

to healthcare and entertainment. However, the growing demand for software and the complexity of these systems have led to a

corresponding increase in energy consumption, resource usage, and environmental impact. Green Software Development

emphasizes the integration of sustainability principles into software engineering to reduce this footprint. This paper proposes a

comprehensive framework for assessing Green Software Quality, focusing on sustainable metrics that evaluate energy efficiency,

resource consumption, and long-term environmental impact across the entire Software Development Lifecycle (SDLC). The

framework introduces quantifiable metrics for energy consumption, CPU and memory usage, maintainability, and code

longevity, providing developers with the tools to create more sustainable software. The practical application of these metrics is

demonstrated, showing significant reductions in energy consumption and resource usage. This framework enables the software

industry to balance high performance with environmental responsibility by embedding these sustainability practices into

traditional software quality models.

Keywords - Green Software, Software Quality, Sustainable Software Development, Sustainability Metrics, Energy Efficiency.

1. Introduction
As modern software systems continue to expand in both

scale and complexity, their environmental impact is becoming

a pressing concern. Traditionally, software development has

been driven by attributes such as functionality, performance,

and security. However, sustainability -particularly in terms of

energy consumption and resource efficiency -has often been

neglected. With the IT sector contributing significantly to

global carbon emissions, especially through the energy

demands of data centers and resource-intensive applications,

addressing the environmental footprint of software is now

critical [1]. Current software quality models, including

ISO/IEC 25010 and IEEE 730, do not provide metrics for

evaluating the sustainability of software systems. These

models emphasize performance and functionality but fail to

account for the energy and resource costs associated with

meeting these demands. As organizations increasingly seek to

align their digital operations with environmental goals, the

lack of tools for measuring the environmental impact of

software has created a notable gap in the field. Developers are

left without a standardized way to assess and improve the

sustainability of the systems they build.

This paper introduces a novel Green Software Quality

Framework designed to fill this gap by incorporating

sustainability metrics directly into software quality

assessments. What sets this framework apart is its

comprehensive approach to integrating energy efficiency,

resource consumption, and long-term maintainability into the

Software Development Lifecycle (SDLC). These

sustainability metrics are embedded from the design phase

through to deployment, ensuring that software is optimized for

minimal environmental impact without compromising on

performance. Through a detailed case study, the practical

application of this framework is demonstrated, showing how

it can achieve substantial reductions in energy use and

resource consumption. The novelty of our approach lies not

only in the introduction of quantifiable sustainability metrics

but also in the seamless integration of these metrics into

existing software quality models. This enables developers to

build software that meets both performance expectations and

environmental standards, offering a pathway for the industry

to adopt greener practices in software engineering. By

embedding sustainability into core software development

processes, a new lens is provided through which software

quality can be assessed and improved in the digital age.

2. Background
With the proliferation of cloud computing, artificial

intelligence (AI), and the Internet of Things (IoT), the

computational demands placed on data centers and servers

have surged, contributing to the overall environmental impact

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Saurabh Kapoor / IJCTT, 72(10), 113-120, 2024

114

of IT. Data centers, which host these software applications,

now account for approximately 1% of global electricity

consumption, and as demand for digital services continues to

grow, this figure is expected to increase. The environmental

costs of operating data centers are twofold: they require vast

amounts of energy for both computational tasks and cooling

systems to prevent server overheating. Additionally, the

carbon footprint associated with the electricity used in IT

infrastructure varies depending on the energy sources, with

non-renewable energy sources further exacerbating

environmental degradation.

The concept of Green IT (Information Technology) has

been around for several years and involves reducing the

environmental impact of IT operations [2-4]. This includes

energy-efficient hardware, reducing data center cooling costs,

and minimizing e-waste. However, Green IT typically focuses

on the infrastructure level (hardware and networking), while

Green Software focuses on making the software itself more

sustainable.

2.1. Definition of Green Software

Green Software refers to the design, development, and

operation of software systems that prioritize environmental

sustainability. The primary objective of Green Software is to

minimize energy consumption and optimize resource usage

throughout the software lifecycle, from development to

launch. Unlike traditional software development, which

focuses primarily on performance, security, and functionality,

Green Software integrates sustainability as a key objective.

The core attributes of Green Software include:

• Energy Efficiency: Reducing the energy consumed by

software during execution by optimizing code,

algorithms, and overall system architecture.

• Resource Efficiency: Minimizing the use of

computational resources such as CPU, memory, storage,

and network bandwidth.

• Sustainability: Designing software that can be easily

maintained and adapted to future energy-efficient

platforms, extending its lifecycle and reducing

environmental impact.

2.2. Existing Software Quality Models

Software quality has traditionally been measured using

standardized models that assess various attributes such as

functionality, performance, security, and maintainability.

Among the most widely adopted models is the ISO/IEC 25010

standard, which defines software quality based on a set of

functional and non-functional attributes.

2.2.1. ISO/IEC 25010 Model

The ISO/IEC 25010 software quality model consists of

two key categories:

• Product Quality: Attributes that describe how well the

software meets user needs in terms of functionality,

reliability, usability, performance efficiency, security,

maintainability, and portability.

• Quality in Use: Attributes that describe the impact of the

software on users, including effectiveness, efficiency and

satisfaction.

While it provides a comprehensive evaluation of software

from both a functional and user-experience perspective, it

does not include sustainability as a criterion. Attributes such

as energy consumption and resource usage are omitted, even

though they are increasingly critical in modern software

systems.

2.2.2. IEEE 730: Software Quality Assurance Plans

The IEEE 730 Standard provides guidance on how to

establish a software quality assurance (SQA) plan to ensure

that software products meet predefined quality criteria. The

IEEE 730 standard focuses on traditional software quality

areas such as verification and validation, traceability, and

defect tracking [5]. However, like ISO 25010, the IEEE 730

standard lacks explicit metrics for evaluating the sustainability

or environmental impact of software.

2.3. Gaps in Existing Models

Both ISO/IEC 25010 and IEEE 730 emphasize software

attributes that ensure the software’s functionality and

reliability but do not account for the environmental impact of

software systems. These models prioritize attributes such as

performance efficiency, but they define this efficiency in

terms of user experience rather than energy or resource

efficiency. For example, performance efficiency in ISO/IEC

25010 refers to how quickly a system responds to user requests

without considering the energy consumed during those

requests.

The absence of sustainability metrics in these models

reveals a major gap in current software quality assessments.

Although organizations recognize the importance of

environmentally responsible practices, they lack the tools to

measure the environmental impact of their software. This

highlights the need for a framework that incorporates

sustainability metrics into existing software quality

evaluations.

2.4. The Need for Sustainable Metrics

The environmental impact of software highlights the need

for sustainability metrics in software quality models. Factors

like inefficient code, complex algorithms, and poor resource

management increase energy use and resource waste [6].

Introducing metrics that measure energy and resource

efficiency can help reduce this footprint. Sustainability

metrics focus on key areas (1) Energy Efficiency to measure

how much energy software consumes during execution, often

in kilowatt-hours per transaction or task (2) Resource Usage

to track the use of CPU, memory, storage, and network

Saurabh Kapoor / IJCTT, 72(10), 113-120, 2024

115

bandwidth by the software (3) Environmental Impact to assess

the software's carbon footprint, including the type of energy

used by the data centers that host the software (4)

Maintainability and Longevity to ensure the software is easy

to maintain and adapt, reducing the need for complete rewrites

and thus saving resources over time.

2.5. Related Work in Green Software Engineering

Research in Green Software has grown, focusing on

reducing software's environmental impact. Key areas include:

2.5.1. Energy-Aware Software Development

Energy-Aware Software Development: This focuses on

reducing energy use at the code level by optimizing

algorithms, using efficient data structures, and eliminating

redundant computations.

Tools have been developed to help developers profile

their code’s energy consumption and identify energy-heavy

operations [7].

2.5.2. Sustainable Cloud Computing

As more software moves to the cloud, research explores

optimizing cloud infrastructure for energy efficiency.

Techniques include auto-scaling to adjust resources based on

demand and using renewable energy in data centers [8].

2.5.3. Green IT Practices

This area addresses energy-efficient hardware, cooling

systems for data centers, and reducing the overall carbon

footprint of IT operations [9].

While these research areas offer valuable insights, a

comprehensive framework that combines them into a

structured approach to Green Software Quality is still needed.

This paper aims to fill this gap by proposing a framework that

integrates sustainability metrics into existing software quality

models. It also provides practical guidelines for developers

and organizations to measure and improve software

sustainability.

3. Proposed Framework for Green Software

Quality
This section outlines a comprehensive framework that

integrates sustainability metrics into existing software quality

models. The goal is to provide a structured approach for

measuring and improving the environmental impact of

software throughout its lifecycle. The framework introduces

three key pillars: Energy Efficiency, Resource Efficiency, and

Sustainability. These pillars ensure that the software not only

meets traditional quality standards but also minimizes its

environmental footprint. Figure 1 displays the components of

the Green Software Quality Framework.

Fig. 1 Components of green software quality framework

Resource

Efficiency

Green

Software

 Quality

Sustainability Energy

Efficiency

Algorithmic

Complexity

Energy

Consumption

per Transaction

Storage

Efficiency

Memory

Usage

Efficiency

Software

Longevity

Code

Complexity

CPU
Utilization
Efficiency

Maintainability

Index

Power Usage

Effectiveness

Saurabh Kapoor / IJCTT, 72(10), 113-120, 2024

116

3.1. Energy Efficiency Metrics

Energy efficiency measures how much energy software

consumes during its execution. More energy-efficient

software uses fewer CPU cycles, memory operations, and I/O

tasks, which reduces power consumption.

3.1.1. Energy Consumption per Transaction

This metric measures how much energy is used to

complete a specific task or process in the software. Reducing

energy use per transaction lowers the software’s overall

environmental impact.

3.1.2. Power Usage Effectiveness (PUE)

PUE assesses the energy efficiency of the data centers

hosting the software, showing how much energy is used for

computing versus cooling and support.

3.1.3. Algorithmic Complexity

Lowering the time and space complexity of algorithms

leads to lower energy consumption during software execution.

3.2. Resource Efficiency Metrics

Resource efficiency metrics evaluate how effectively

software uses available hardware resources such as CPU,

memory, and storage. Inefficient use of these resources

increases energy consumption and environmental impact.

Metrics for assessing resource efficiency include:

• CPU Utilization Efficiency: This metric measures how

well the software utilizes CPU resources. Reducing idle

time and maximizing productive CPU cycles can reduce

energy consumption.

• Memory Usage Efficiency: This measures the software’s

memory footprint, identifying any memory leaks or

overuse of memory resources.

• Storage Efficiency: This metric monitors how effectively

software manages and accesses data, aiming to minimize

disk usage and optimize data retrieval.

By optimizing resource usage, developers can create

software that is both high-performing and environmentally

friendly software, using fewer hardware resources for the

same operations.

Fig. 2 Green software metrics in software development life cycle

GREEN SOFTWARE METRICS

1: Requirement

Phase

2: Design Phase

3: Development

Phase

4: Testing

Phase
5: Deployment

Phase

6: Maintenance

Phase

1.Energy and Resource Efficiency Goals

2. Energy Efficient Design Patterns

3. Green Coding Practices

4. Energy & Resource Testing

5. Green Cloud Deployment

6. Real-Time Monitoring

Saurabh Kapoor / IJCTT, 72(10), 113-120, 2024

117

3.3. Sustainability Metrics

Sustainability metrics go beyond immediate energy and

resource efficiency, focusing on the software's long-term

environmental impact. These metrics measure how well the

software can be maintained, upgraded, and adapted to future

platforms without unnecessary waste. Key sustainability

metrics include:

3.3.1. Maintainability Index

This metric measures how easy it is to maintain the

software over time. Software that is easier to maintain reduces

the likelihood of rework or major overhauls, which conserves

resources.

3.3.2. Code Complexity

High code complexity makes it harder to maintain and

optimize software, leading to inefficiency over time.

Simplifying the code can improve sustainability.

3.3.3. Software Longevity

This metric focuses on how long software can remain

useful without needing to be replaced. Software designed with

modularity and adaptability can be easily upgraded, reducing

waste and extending its lifecycle. Sustainability metrics

encourage developers to design software with long-term

environmental goals in mind, ensuring that it remains efficient

and adaptable over time.

4. Implementation of Green Software Metrics in

Software Development Lifecycle
The Green Software Quality Framework incorporates

sustainability metrics such as energy efficiency, resource

efficiency, and long-term maintainability into each stage of

the SDLC. This section provides a detailed explanation of how

these metrics can be applied and monitored throughout the key

phases of software development. Its environmental footprint.

Refer to Figure 2 to view the Green Software Metrics in SDLC

4.1. Requirement Phase: Defining Sustainability as a Non-

Functional Requirement

Sustainability goals should be included as non-functional

requirements. This will ensure energy efficiency and compute

resource optimization are taken care of from the beginning.

There should be limits on energy consumption per transaction

or operation based on industry standards or past benchmarks.

Also, define acceptable CPU, memory, and storage usage

limits, ensuring that hardware resources are used efficiently.

There should be goals for maintainability, modularity, and

code complexity to ensure long-term adaptability and

efficiency.

4.2. Design Phase: Architecting for Energy & Resource

Efficiency

This phase offers a significant opportunity to embed

sustainability into the software's architecture. A good

architectural choice can drastically reduce consumption and

improve overall energy efficiency. Developers could leverage

patterns like caching, lazy loading, and deferred processing to

minimize unnecessary energy and resource usage. They could

prioritize algorithms with low computational complexity to

reduce CPU cycles and memory usage. The architecture

should be scalable and dynamically adjust resource usage

based on demand, minimizing idle resource consumption.

Also, the design should be compatible with energy-efficient

hardware and platforms, optimizing overall energy

consumption.

4.3. Development Phase: Writing Energy-Efficient Code

Coding practices play a major role in determining the

energy and resource efficiency of the software. Implementing

green coding practices helps developers write more efficient,

eco-friendly software. Developers should focus on optimized

algorithms, avoid redundant operations, and reduce memory

leaks. Efficient memory management and reduced I/O

operations are key to minimizing energy consumption.
Continuously refactor code to improve performance and

reduce energy usage.

4.4. Testing Phase: Measuring Sustainability Metrics

The testing phase provides a unique opportunity to

directly measure and validate energy consumption and

resource usage. The below table summarizes the tools that

could be used to measure and track various metrics. (Refer to

Table 1)
 Table 1. Testing phase

Testing Tools Measuring

Energy

Efficiency

Testing

Intel Power

Gadget,

JouleMeter

real-time energy

consumption.

Resource

Usage Testing

Prometheus,

Grafana, or New

Relic

CPU, memory, and

storage usage

during software

testing

Load and Stress

Testing with

Green Metrics

JMeter, Gatling,

WebLOAD,

LoadRunner

Software behavior

under different

levels of demand

and if it scales

efficiently in terms

of energy use

4.5. Deployment Phase: Optimizing for Green Infrastructure

The deployment phase offers an opportunity to further

reduce the software’s environmental footprint by deploying it

in energy-efficient environments. Deploying cloud providers

that offer renewable energy sources and sustainable

infrastructure options, such as AWS or Google Cloud could

be an option.

Using auto-scaling features to dynamically allocate

resources based on demand, ensuring that servers only use

resources when required and utilizing Docker and Kubernetes

Saurabh Kapoor / IJCTT, 72(10), 113-120, 2024

118

to optimize resource use by running containers that allocate

only the resources needed for specific tasks would ensure

efficient use of resources and energy post-release.

4.6. Maintenance Phase: Monitoring and Continuous

Optimization

The maintenance phase should focus on monitoring and

optimizing energy consumption throughout the software’s life

cycle. Continuous monitoring of energy consumption, CPU

usage, and memory usage allows for ongoing optimization.

Tools such as Datadog, New Relic, or AWS CloudWatch can

provide real-time insights into how efficiently the software

operates post-deployment.

Periodic sustainability audits ensure that the software

continues to meet its green objectives. Audits can include

reviewing code complexity, energy usage trends, and resource

allocation to identify areas for improvement.

5. Case Study: Implementing the Green

Software Quality Framework
To demonstrate the effectiveness of the proposed Green

Software Framework, a case study was conducted on a large-

scale web application. The aim was to integrate the

framework’s sustainability metrics into the Software

Development Lifecycle and evaluate the impact on energy

efficiency, resource consumption, and overall sustainability.

5.1. Background

The subject of the case study is a web application that is

resource-intensive, requiring constant server communication

and heavy database operations due to its complex architecture.

This is leading to significant CPU and memory usage, which

directly impacts energy consumption. The application is

deployed on cloud infrastructure, making it a suitable

candidate for assessing energy efficiency and resource

optimization. The goal was to optimize energy consumption

and resource usage without affecting user experience.

5.2. Methodology

It involved collecting baseline metrics for energy

consumption, CPU, memory, and storage usage using tools

such as Intel Power Gadget and Prometheus. These metrics

served as the foundation for identifying areas of inefficiency.

For energy efficiency, algorithms were refactored to reduce

computational load, and cloud resource allocations were

optimized by right-sizing virtual machine instances.

Resource efficiency was addressed by optimizing

memory management, improving database queries, and

minimizing redundant I/O operations, which led to reductions

in CPU and memory consumption. For sustainability, the

codebase was simplified using SonarQube to lower technical

debt and improve maintainability. Green software metrics

were integrated into the SDLC by establishing clear energy

and resource usage limits during the requirements phase. The

design phase incorporated energy-efficient design patterns,

such as caching and deferred processing, to further reduce

energy use. Automated energy efficiency tests were added to

the CI/CD pipeline to monitor compliance with sustainability

goals during each iteration of development.

5.3. Results

The adoption of the Green Software Quality Framework

led to significant improvements in energy efficiency and

resource usage. Energy consumption was reduced by 17.1%,

achieved by optimizing algorithms and right-sizing cloud

resource allocations.

Resource efficiency saw significant gains, with CPU

usage reduced by 17.3% due to optimized computations and

offloading non-critical tasks, while memory usage decreased

by 18% through improved memory management and caching

techniques.

Even with these improvements, the application's

performance stayed stable. Response times were within 5% of

the original measurements, ensuring that the optimizations did

not negatively impact the user experience. In summary, the

results showed that adding the Green Software Quality

process to the software development process made the system

more efficient and eco-friendly without losing performance.

 Fig. 3 Energy Consumption Over Time (KWh)

Fig. 4 CPU Usage Over Time (%)

Saurabh Kapoor / IJCTT, 72(10), 113-120, 2024

119

Fig. 5 Memory Usage Over Time (%)

5.4. Key Insights & Learnings

The case study on implementing the Green Software

Quality Framework offered several important insights and

practical lessons. First, achieving a balance between energy

efficiency and performance was essential. While reducing

energy consumption, it was ensured that performance and user

experience were not compromised.

This required frequent adjustments based on ongoing

monitoring of energy and performance metrics. Second,

setting sustainability goals early in the SDLC was crucial. By

establishing clear targets for energy and resource usage during

the requirements phase, sustainability was made a core focus

throughout development, leading to more effective outcomes.

Additionally, optimizing the cloud infrastructure through

auto-scaling and using renewable energy sources significantly

cut down resource wastage. Another key insight was the

impact of introducing green coding practices to the

developers.

Lastly, integrating real-time monitoring and automated

sustainability tests into the CI/CD process was vital. This

approach allowed us to quickly identify and correct

inefficiencies as new features were developed, ensuring the

system remained optimized.

6. Conclusion & Future Work
The case study demonstrated the practical benefits of

integrating the Green Software Quality Framework into the

SDLC. By focusing on energy and resource efficiency, the

web application achieved significant reductions in energy

consumption and resource usage without sacrificing

performance. The maintainability improvements further

contributed to the long-term sustainability of the software,

ensuring that it can be easily adapted and extended in the

future. This case study highlights the importance of

incorporating sustainability metrics into software

development processes and shows that organizations can

achieve substantial environmental benefits while maintaining

high standards of software quality. This detailed case study

provides a thorough example of how the Green Software

Quality Framework can be applied in a real-world context,

with measurable improvements in energy efficiency, resource

usage, and sustainability.

While the Green Software Quality Framework has shown

promising results, there are several avenues for future work to

further enhance its effectiveness. One potential area is the

integration of machine learning and AI-driven techniques to

automate the optimization of energy and resource usage in real

time. By learning from historical performance data, these

systems could predict and adjust resource allocation

dynamically, improving efficiency without manual

intervention. Another area to explore is the expansion of

sustainability metrics to include carbon footprint tracking

across the entire software supply chain, including

development, deployment, and infrastructure operations.

Additionally, future work could focus on wider industry

adoption by developing tools and frameworks that make it

easier for organizations of all sizes to implement green

software practices. Collaboration with cloud service providers

to standardize reporting on energy consumption and

renewable energy usage could further strengthen the impact of

the framework. Finally, ongoing research into more granular

energy profiling tools would enable even deeper insights into

software inefficiencies, allowing for more targeted

improvements in energy and resource usage.

References
[1] ISO25000, ISO/IEC 25010 Standards, 2024. [Online]. Available: https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

[2] Coral Calero, Manuel F. Bertoa, and Ma Ángeles Moraga, “A Systematic Literature Review for Software Sustainability Measures,”

Proceedings 2013 2nd International Workshop on Green and Sustainable Software (GREENS), San Francisco, CA, USA, pp. 46-53,

2013. [CrossRef] [Google Scholar] [Publisher Link]

[3] Markus Dick et al., “Green Software Engineering with Agile Methods,” Proceedings 2013 2nd International Workshop on Green and

Sustainable Software (GREENS), San Francisco, CA, USA, pp. 78-85, 2013. [CrossRef] [Google Scholar] [Publisher Link]

[4] F. Ahmed, H. Mahmood and A. Aslam, “Green Computing and Software Defects in Open-Source Software: An Empirical Study,”

Proceedings 2014 International Conference on Open Source Systems & Technologies, Lahore, Pakistan, pp. 65-69, 2014. [CrossRef]

[Google Scholar] [Publisher Link]

[5] IEEE Standards Association, IEEE Standard for Software Quality Assurance Processes, 2002. [Online]. Available:

https://standards.ieee.org/ieee/730/5284/

https://doi.org/10.1109/GREENS.2013.6606421
https://scholar.google.com/scholar?cluster=160662563251099287&hl=en&as_sdt=0,5
https://ieeexplore.ieee.org/document/6606421
https://doi.org/10.1109/GREENS.2013.6606425
https://scholar.google.com/scholar?cluster=13785254734465846705&hl=en&as_sdt=0,5
https://ieeexplore.ieee.org/document/6606425
https://doi.org/10.1109/ICOSST.2014.7029322
https://scholar.google.com/scholar?cluster=2237570341032166362&hl=en&as_sdt=0,5
https://ieeexplore.ieee.org/document/7029322
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

Saurabh Kapoor / IJCTT, 72(10), 113-120, 2024

120

[6] Satendar Singh et al., “Green and Sustainable Software Model for IT Enterprises,” Proceedings 2021 5th International Conference on

Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, pp. 1157-1161, 2021. [CrossRef] [Google Scholar]

[Publisher Link]

[7] Hina Anwar, and Dietmar Pfahl, “Towards Greener Software Engineering Using Software Analytics: A Systematic Mapping,”

Proceedings 2017 43rd Euromicro Conference on Software Engineering and Advanced Applications (SEAA), Vienna, Austria, pp. 157-

166, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[8] Christoph Becker et al., “Sustainability Design and Software: The Karlskrona Manifesto,” Proceedings 2015 IEEE/ACM 37th IEEE

International Conference on Software Engineering, Florence, Italy, pp. 467-476, 2015. [CrossRef] [Google Scholar] [Publisher Link]

[9] Stefan Naumann et al., “The Greensoft Model: A Reference Model for Green and Sustainable Software and Its Engineering, Sustainable

Computing: Informatics and Systems, vol. 1, no. 4, pp. 294-304, 2011. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1109/ICECA52323.2021.9675938
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Green+and+Sustainable+Software+Model+for+IT+Enterprises&btnG=
https://ieeexplore.ieee.org/document/9675938
https://doi.org/10.1109/SEAA.2017.56
https://scholar.google.com/scholar?cluster=7107777912364181993&hl=en&as_sdt=0,5
https://ieeexplore.ieee.org/document/8051343
https://doi.org/10.1109/ICSE.2015.179
https://scholar.google.com/scholar?cluster=8945032631246404773&hl=en&as_sdt=0,5
https://ieeexplore.ieee.org/document/7202997
https://doi.org/10.1016/j.suscom.2011.06.004
https://scholar.google.com/scholar?cluster=3319417760093131832&hl=en&as_sdt=0,5
https://www.sciencedirect.com/science/article/pii/S2210537911000473?via%3Dihub

